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Electrpmagnetic and Transport Considerations
in Subpicosecond Photoconductive
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Abstract —1t is now possible to use optoelectronic techniques to both
generate and measure electrical waveforms with subpicosecond rise
times. These rise times invalidate assumptions commonly made in
developing equivalent circuit models for transmission lines and other
simplifications commonly made in modeling conductivity. In this paper
we discuss how a combination of direct finite-difference time-domain
solutions of Maxwell’s equations and Monte Carlo models of photocar-
rier transport can be used to avoid making these assumptions.

I. INTRODUCTION

HOTOCONDUCTIVE switching and electro-optic
sampling provide a basis for generating and measur-

ing electrical waveforms with subpicosecond rise times. A
phatoconductive switch is a simple structure, a gap in a
microstrip line laid down on a photoconductive substrate,
with a variety of uses [1]. The switch is activated by
exciting the gap with a laser pulse of duration under 0.1
ps. As these short laser pulses are generated at a repeti-
tion rate ranging from 1 kHz to 100 MHz, they also can
be used to repetitively sample the fields propagating
down the line. This is done by placing an electro-optic
material near the line, shining the optical pulses through
this material, and measuring the polarization shift gener-
ated by the electric field associated with the line [2}-16].
A commonly used analysis of such experiments was
developed by Auston [7]. In Auston’s approach, the pho-
toconductive switch is modeled by a time-varying conduc-
tance connected in parallel with a capacitance. This switch
is then inserted between two ideal, lossless transmission
lines, one terminated by a source and the other by an
impedance. The use of such a simple transmission line
model is questionable for waveforms with subpicosecond
rise times. While more complicated equivalent circuits,
incorporating transmission lines with frequency-depen-
dent characteristic impedances, have been used [8], these
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models are not well suited for the present case. Instead,
direct solutions of Maxwell’s equations are needed for a
more general and exact approach.

Maxwell’s equations, however, do not provide a com-
plete mathematical description of the problem. They must
be supplemented by a set of constitutive relations. The
problem considered here involves the interaction between
an electromagnetic wave and photogenerated carriers.
The carriers appear in Maxwell's equations as sources of
electromagnetic fields. On the other hand, the fields are
the forcing functions in the constitutive carrier transport
model. A model of the interaction between these two
systems can be accurate for subpicosecond rise times only
if the models of both systems are accurate for subpicosec-
ond rise times. Here, we use ensemble Monte Carlo
(EMC) techniques to model the photoconductive re-
sponse of the gap and direct solutions of Maxwell’s equa-
tions to model the electromagnetics of the problem.

Switching transient problems can be solved either in
the time domain or, for linear systems, in the frequency
domain (by transforming the results into the time domain
[9], [10]). The electrornagnetic aspects of this problem are
linear and can be investigated using such approaches.
However, the photocarrier transport processes are highly
nonlinear, thereby eliminating any frequency-domain ap-
proach to their modeling. Fortunately the time of interest
to us is at most a few tens of picoseconds; therefore a
direct time-domain solution of Maxwell’s equations in
conjunction with a Monte Carlo trasnport model is possi-
ble for this problem.

II. TRANSIENT PHOTOCONDUCTIVITY IN
GALLIUM ARSENIDE

In Fig. 1 we show the energy flows of importance in
photoconductivity. An optical pulse is used to pump en-
ergy into the semiconductor by the generation of elec-
tron-hole pairs. In Fig. 2 we illustrate the possible pair
generation processes in gallium arsenide. We can photo-
generate electrons out of three different valence bands:
the heavy hole band, the light hole band, and the split-off
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Fig. 2. Possible electron-hole pair generation in GaAs.

band, provided that the photon energy is sufficient for
any individual transition. As is shown in Fig. 2, the
photogeneration process is as likely to produce an elec-
tron with a negative velocity as it is an electron with a
positive velocity. Therefore, the initial photocurrent is
zero. These carriers are accelerated by the electromag-
netic fields present in our structure. As the average
velocity or current builds, energy begins to flow from
these ficlds into the carriers. Energy gained by the carri-
ers flows out along several different paths. There are
several different carrier—carrier interactions or scattering
processes: the eclectron-electron interaction, hole—hole
scattering, and electron-hole scattering. The first two
merely reshuffle the energy (and momentum) inside one
of the two carrier gases. The last, however, is of some
importance. Due to the large difference in effective mass
between electrons and holes, there is a net flow of energy
from the electron gas into the hole gas [11]. Both carrier
species also lose energy to the crystal lattice through the
process of optical phonon emission. Since they emit opti-
cal phonons at rates in excess of the absorption rate, the
population of the optical phonon modes is driven up to
levels above their equilibrium values. As this goes on, the
absorption rate, which is proportional to the number of
phonons available for a carrier to absorb, increases. The
emission rate, however, remains constant and therefore
the net rate at which energy flows from the carriers to the
lattice decreases. It takes several picoseconds, however,
for this hot phonon effect to build [12]. Eventually, these
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phonons decay back to their equilibrium levels and the
system is thus connected to a heat bath.

The assumption effectively made by Auston, and used
in other models of photoconductivity as well [13], [14], is
that the system instantaneously achieves a steady state.
Under this assumed situation, the rate at which the carri-
ers gain energy from the fields is equal to the rate at
which they lose energy to the bath. We will refer to such
models as being quasi-static. However, such a steady state
takes several picoseconds to be established following the
incidence of a short laser pulse. In Fig. 3 we illustrate this
by an EMC calculation of the average electron velocity
following photogeneration into GaAs. If a quasi-static
model were used, the carriers would be assumed to in-
stantaneously reach their final steady-state velocity. As
can be seen, this is a poor approximation.

Transient responses for photoexcitation into GaAs, such
as that of Fig. 3, are wavelength dependent. When the
optical wavelength is tong enough, no electrons are gener-
ated near or above the energy threshold for intervalley
scattering. For sufficiently short wavelengths, however,
electrons are photogenerated above this threshold. Sev-
eral things then happen. First, many of these electrons
rapidly scatter to the higher mass valleys and the initial
transients, especially at low electric fields, are dominated
by a gradual return over several picoseconds of these
electrons to the central valley. Additionally, for higher
fields, there is a preferential selection of negative-velocity
clectrons as survivors in the central valley. Such electrons
lose energy to the field and thereby fall below the inter-
valley scattering threshold. In summary, the photore-
sponse is not only wavelength dependent but also highly
nonlinear and strongly affected by details of the elec-
tronic distribution in the energy bands [8].

The above results were calculated by the EMC tech-
nique, which we will generally use throughout this paper.
This is one variation among many possible transport mod-
els. EMC calculations operate at the semiclassical level,
where electrons are classical particles whose dynamics are
controlled by the energy bands of the system and the
various scattering processes are independent and instan-
taneous, While fully quantum mechanical models for
transport exist [15], [16], they use different simplifying
approximations. In an EMC simulation, we keep track of
several thousand particles, accelerating them by the fields
and statistically simulating the various individual scatter-
ing mechanisms. This is a computationally intensive task
but it involves no assumptions beyond those made in the
computation of the energy bands and scattering rates,
assumptions which are shared by all semiclassical trans-
port models. The Boltzmann transport equation is also
computationally intensive, as it is a nonlinear, integrodif-
ferential equation while its accuracy is limited by its use
of a single time distribution function [17].

Simpler models [18], [19] model only the average flow
of energy and momentum through the system without
assuming the existence of a steady state. These models
cannot describe the preferential selection of negative-
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Fig. 3. Average electron velocity calculated using EMC.
velocity electrons as survivors in the central valley as they —completely characterized by just solving the equations
assume a specified shape to the distribution function [19].
In general, this assumed distribution function shape can VX E=— ME (1a)
lead to an inaccurate emphasis on the wrong energy- at
dependent scattering mechanism. Finally, we encounter OE
j[he quasi-static moc}els in which we assume thaF carriers VxH=c—+J (1b)
instantaneously achieve a steady state with the field. ot
Q0
. VJ=-—. 1lc
o (1c)

III. ELECTROMAGNETIC THEORY

Several techniques exist for solving Maxwell’s equations
in the time domain, including the transmission-line matrix
method [20], the time-domain method of lines [21], and
the finite difference method [22], [23]. Of these, the finite
difference scheme is more convenient for this study since
it directly discretizes the electric and magnetic fields
using a rectangular mesh in space and decouples the
fields over a small time interval (A¢). Therefore, the
spatial and temporal characteristics of the fields can eas-
ily be visualized and incorporated inside the semiconduc-
tor model.

Maxwell’s equations can be reduced to three indepen-
dent equations in the unknowns: E, the electric field; B,
the magnetic flux density; H, the magnetic field; D, the
electric flux density; J, the conduction current density;
and Q, the total electric charge density. They must be
supplemented by constitutive relations. Here we assume a
uniform, linear, isotropic medium for the dielectric and
magnetic relations and use the EMC for the conductivity
model. The quantities € and p are the permittivity and
permeability of the medium respectively. Hence, the elec-
tromagnetic wave propagation in this medium can be

These are three equations in three unknowns, (ic., E, H,
and J), while Q is considered a source. In an ideal
dielectric medjum, where J and Q are zeros, (1a) and
(1b) are sufficient to describe the electromagnetic phe-
nomena. The details of the solution in the pure dielectric
structure can be found elsewhere [22], [24].

We assume that the semiconductor has a uniform,
linear, isotropic dielectric constant and replace (1a) by the
three scalar equations

OE, OE, H, 20

dy iz IVL; Jat 4

E, IE, oH, )

iz o Mo (
and

JE, OE, JH.,

—— == (2¢)

dx ay at

There are three similar equations that correspond to (1b).
Discretizing the electric field over a three-dimensional
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Fig. 4. The rectangular mesh used in discretizing Maxwell’s equations.

spatial mesh as shown in Fig. 4, (2a) becomes

E;(17]7k)—E.£(17j-1’k)

Ay
Az
H;’+A[(i/’j/’kr) _ H;'(l.’,j’,k,)

At )

Similar difference equations exist for (2b) and (2c).
For the magnetic field, a similar set of equations can be
developed over a three-dimensional spatial mesh (7', j', k')
and time (¢'). One should notice that the electric field
mesh (i, j, k) and time (z) are displaced from the magnetic
field mesh (', /', k') and time (¢') by half the mesh incre-
ments (Ax, Ay, Az, and Az), as shown in Fig. 4, to
achieve the proper definition of fields in space and time.
These equations are written in a matrix form as follows:

H "% =H{+ A\E,+ A,E} (4a)
H;'““ =H; + A;E. + A,E! (4b)
HITAM <= HY + ASE{ + A.E! (4c)

where H!'"*A" H! E!, Ej, ctc., are vectors containing the
numerical values of the ficlds at the different time inter-
vals, and A, A,, etc., are matrices containing the infor-
mation about the structure, the mesh, and the boundary
conditions. There are three similar equations for the
electric field components at time ¢ + At. The time evolu-
tion scheme is shown in Fig. 5. The time dependence of
the current density, J, is discussed in Section V.

Our switching transient starts from an initial self-
consistent distribution of the fields and charges. If the
device is not biased and contains no free charges, then it
may be assumed that the initial fields are zero. However,
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Fig. 5. The evolution scheme.

when the device is biased, one should initially solve for
the dc charges and currents which are the sources for the
clectric and magnetic fields. Then, the fields can be
obtained from their sources by using a suitable set of
equations.

Our problem aiso has boundaries on which the tangen-
tial electric and magnetic fields must be known. In practi-
cal cases, the semiconductor device is surrounded by
cither metallic surfaces or open space (i.e., air). The
metallic conductors are normally approximated as perfect
conductors, which leads to zero tangential electric fields.
For the open space boundaries, no such direct physical
scheme exists. Therefore, one may enclose the structure
inside a box of perfectly conducting electric or magnetic
walls, selected based on the physics of the problem at
hand and the degree of accuracy required, as we will do
here. The alternative solution is to use absorbing bound-
ary conditions to artificially simulate open space [25], [26].

1V. TuHe MonTE CARLO APPROACH

We shall briefly outline here the main features of our
EMC algorithm, which has been used to study the tran-
sient transport of the photoexcited carriers. Creation of
the electron-hole pairs is simulated by adding particles
according to the line shape of the laser pulse. A three-
valley electron and three-band hole model under the
effective mass approximation is used for determining the
initial energy and wave vector distribution. The starting
k-space distribution is assumed to be isotropic, thus ne-
glecting any effects of warped hole bands and polarized
laser pulses [27]. By varying the initial energy assigned to
the photogenerated carriers. we can simulate an arbitrary
laser wavelength. The carrier photogeneration monotoni-
cally decreases with depth according to a decaying expo-
nential with the decay set by a, the optical absorption
coefficient.

The present bipolar EMC includes all the relevant
carrier—-phonon and carrier—carrier scattering mecha-
nisms. Single-mode LO and TO couplings via the polar
and optical deformation potential have been used, while
all plasmon-phonon interactions have been ignored.
Nonpolar acoustic scattering has also been included for
completeness since it is momentum randomizing in nature
and affects the carrier drift velocity. The calculations of
the carrier scattering rates and the choice of the scatter-
ing mechanisms are made according to techniques out-
lined by Jacoboni and Reggiani [28]. A static but time
evolving screening model proposed by Osman and Ferry
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[29] is used for the polar interactions. Under this scheme,
the time changing distributions and carrier energies are
used to update the effective screening length. The main
contribution to the screening process under this static
model comes from the low-energy heavy holes.

Carrier—carrier scattering is also an important process
and has been incorporated into the present EMC simula-
tions. The electron-hole scattering affects the ultrafast
transient behavior by providing an additional channel for
energy transfer [30]. This energy loss is dominant for
carriers having energy below the phonon emission thresh-
old, and can even become important at higher carrier
energies for densities exceeding 5x 10" cm ™3 [11]. Elec-
tron-electron and hole—hole collisions have been left out
since they do not change the ensemble momentum and
energy of each carrier type.

V. CouprLING THE TIME-VARYING ELECTROMAGNETIC
FierLps witH THE EMC METHOD

The EMC is a semiclassical approach for describing the
response of individual particles to external driving forces.
On the other hand, electromagnetic {ields obtained from
a solution of Maxwell’s equations are based on a fluid
model. In order to create the link between the common
physical parameters of the kinetic EMC and the fluid
electromagnetic model, we use the following scheme.

From the EMC point of view, space is divided into
cubic cells. The electric and magnetic fields influencing
the carrier motion are considered uniform within each
cell. The carriers are positioned within the cell according
to the initial distribution. As was described in Section III,
the electric and magnetic fields obtained from the finite
difference scheme are defined on the boundaries of the
mesh used for the electromagnetic calculations. The cell
used for the EMC, however, does not coincide with the
three-dimensional mesh used in the electromagnetic solu-
tion. Therefore, the electric and magnetic fields resulting
from the finite difference scheme have to be converted
before being passed to the EMC program.

The current density distribution represents the feed-
back element from the EMC program for updating the
electromagnetic fields. Therefore, some conversion is re-
quired from the EMC particle definition of the current to
the electromagnetic fluid definition of the current density.
The current densities are defined in the center of the
EMC cell; hence it is defined at the corner of the spatially
shifted finite difference mesh. The current density is
mathematically calculated as

J(l7]7k)
q N, j.k)
- Sh A’ .’k, Vh -’ -,k’
SINTY, El (ivj ke, m)VA(i.j ke n)

Ne(,i k)
- Y SU,j.k,n)Ve(i.jk.n)

n=1

(5)

where §%¢ and V"¢ are, respectively, the supercharges
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and velocities associated with the holes and electrons
within the (7, j, k)th cell, N*+¢ are the numbers of holes
and electrons in the (i, j, k)th cell respectively, and Ax,
Ay, and Az are the mesh spacings in the three directions.
These supercharges play an important role. They are
required because while we can simulate only a few tens of
thousands of particles, millions are present in the real
device; therefore, each simulated particle corresponds to
many real particles. By adjusting these supercharges on
the fly, it is possible to introduce generation and recombi-
nation effects into the simulation.
We now outline the actual simulation process:

Step 0) The entire simulation begins by solving for the
initial electric and magnetic field distributions
before introducing the carriers. The initial dis-
tribution of the optically generated electron—
hole pairs is calculated via the EMC scheme.
The photogenerated carriers are allowed to
drift under the influence of the initial fields
for a period of Ar/2 starting from the t =0
instant. The current density distributions at
t = At /2 are calculated using (5).

The electric field, which is effectively defined
at NAt, is updated. The new electric field is
used to update the magnetic field, which is
effectively defined at (N +1/2) At, using (4).
The carriers are allowed to drift, for a period
of At, using the electric field obtained in step
1 and the magnetic field, effectively defined at
t = NAt, which is calculated as

HNAt =0.5(H(N—05)At+H(N-H)S)At). (6)

Step 1)

Step 2)

At the end of this time step At, the current
density distribution defined at (N +1/2) At is
calculated using (5).
Steps 1 and 2 are repeated until the entire period of
interest is covered. These steps are summarized in the
flowchart shown in Fig. 6.

VI. RESULTS AND DISCUSSION

For demonstration purposes we simulate the structure
shown in Fig. 7. This structure is a coupled microstrip line
using undoped GaAs as the substrate. The thickness of
the dielectric material, L, is 4.5 um. The width of each
strip, w,, is 2 wm, and the separation between them, S, is
4 pm, One of the strips is grounded at both ends. The
other strip has a gap., L,, of width 5 um with one end
grounded and the other connected to a dc source of 8 V.
This entire structure is enclosed within a metallic box of
dimensions L, =7 um, L, =14 pm, and L,=120 pm.
The entire space inside this metallic box is discretized
using a three-dimensional uniform mesh with Ax =Ay =
Az=0.5 pm. .

The laser pulse, of energy 1.55 ¢V and duration 30 fs
(FWHM), is applied on the gap of width L, mentioned
above. Furthermore, we assume that this pulse uniformly
covers the entire gap. The carrier concentration gener-
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Fig. 6. The flowchart.

Fig. 7. The simulated structure and the EMC box.

ated by this pulse is taken to be 3x10' cm 3, Since
undoped GaAs is used as the substrate, the thermally
generated carriers at 300 K are negligible in comparison
with the optically generated carriers. Based on this as-
sumption, virtually no current flows prior to the applica-
tion of the laser pulse.

~ The generated carriers are mainly concentrated around
the gap. The carrier velocities in GaAs are typically of the
order of 10’ cm/s, so during the simulation times of
interest here, the carriers drift only short distances away

[EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, No. 5, MmAY 1990

(b

Fig. 8. The electron distribution in the cells below the air/GaAs
interface at (a) £ = 0.3 ps and (b) r = 0.8 ps.

from the gap. It is therefore reasonable to run the EMC
only within the regions having mobile carriers, which, in
this case, is the box of dimensions w,, w,, and w, sur-
rounding the gap as shown in Fig. 7. The results shown
here are for w,=2.5 um, w,=4 pm, and w, =10 um.
The metallic contacts absorb all incident mobile charge,
and also supply the semiconductor with free carriers to
maintain current continuity. Following a particle absorp-
tion process by the metal on one side of the gap, carriers
are reinjected from the strip on the opposite side of the
gap. The velocity of the reinjected particle is chosen
randomly from a thermalized Maxwellian distribution.
Other boundaries are assumed to have negligible surface
recombination and are modeled as perfectly reflecting
boundaries. Finally, 9000 electrons and holes are used to
simulate the photogenerated carriers.

The electron density distributions in the cells immedi-
ately below the air/GaAs interface are shown in parts (a)
and (b) of Fig. 8 0.3 and 0.8 ps after applying the laser
pulse, respectively. Only a minor change in the electron
distribution can be observed for the following reasons.
First, the time span between the two distributions is
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(b)

Fig. 9. The hole distribution in the cells below the air/GaAs interface
at (@) r =03 ps and (b) t = 0.8 ps. :

small, which means that the electrons could move only
very short distances. This obviously would be altered by
recombination in many situatiens. The last factor which
can alter this has to do with the contacts. Contacts of the
p type, for example, in a p-i-n structure cannot inject
electrons. Here, since the electrons collected at one end
were reinjected at the other, this effect has a minimal
change on the distribution. However, the electron distri-
bution spreading away from the gap, in the y direction, is
noticeable. The hole distributions in the same cells at the
same times are shown in parts (a) and (b) of Fig. 9. The
change in this distribution is even smaller than that ob-
served in Fig. 9. Obviously, this is due to the lower hole
mobility.

The Z components of the electric field over the entire
air /GaAs interface at ¢ =03 and 0.8 ps are shown in
parts (a) and (b) of Fig. 10 respectively. Contrary to the

_electron and hole distributions, a significant change is
observed in E,. This is understood by knowing that even
when the carrier distributions- do not change, their veloc-
ity in the Z direction must dramatically increase; of
course, this is up to a certain limit. However, the currents
generated by the movement of carriers induce fields that
oppose the original accelerating fields. This reduces the
magnitude of the electric field in the gap. One should
notice that the initial E, in the gap (i.e., at ¢ = 0.0) is not
uniform, as was previously mentioned by Lu et al. [32].
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Fig. 11. The average electron velocity evolution with time.

The average clectron velocity as a function of time is
shown in Fig. 11. This velocity increases almost linearly
with time for 7 < 0.2 ps. It reaches a maximum velocity
that is slightly higher than 1.5x107 cm/s at about 0.5 ps
and then decreases toward the expected saturation value
of about 107 cm/s. This shape generally resembles the
profiles seen in Monte Carlo simulations of photogenera-
tion in spatially uniform, temporally constant fields.

There are several unresolved modeling issues. We al-
ready have referred to the question of how one models
the open spaces seen in the real systems. We initially used
a reflecting electric or magnetic wall, which introduces
spurious reflections. While we might imagine the use of
well-established boundaries as being useful in certain
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precision measurements, we are equally sure that the vast
majority of applications of photoconductive switching and
electro-optic sampling will not involve placing the system
in a metallic box. Therefore, the use of absorbing bound-
aries at the open edges is required. To exploit this inter-
esting approach, we believe that some techniques must be
used to reduce the computational effort (e.g., using a
nonuniform mesh in the finite difference scheme) or to
eliminate stability constraints on time step selection (by
use of implicit numerical algorithms).

There also are boundary condition issues faced in the
EMC. Since it is a particle-based simulation, you must ask
what happens when the carrier hits the edge of the system
being simulated. Generally, the edge either reflects it or
absorbs it. If it is absorbed, then one must determine
whether or not it is to be reinjected into the system and, if
so, where and with what velocity. We have performed
some investigations of this point [31].in which we again
use flexible supercharges to better match the particle
model with basic conservation rules.

There are also two material parameter issucs not yet
resolved, First, the dielectric constant of GaAs and other
compound semiconductors is not constant over the wide
frequency range needed for accurate modeling of such
short rise times. In a time-domain simulation, we cannot
directly employ a frequency-dependent constant. While
we may be able to use the Monte Carlo to simulate the
electronic contribution inside the gap, outside the gap this
cannot be done. One approach would be to transform the
frequency-dependent dielectric relation into a convolu-
tion integral in the time domain. Beyond introducing
extra numerical problems, it complicates the transforma-
tion of (1b) to (2b).

The second material parameter issue is the electro-optic
sampler. These materials do not have a simple, constant
dielectric property but instead exhibit visible anisotropy.
This, however, can be implemented relatively easily here.
If this is done, we can then employ the code to determine
the degree to which the introduction of an external
electro-optic sampler changes the fields being sampled by
it. A point of interest here is that the electro-optically
induced polarization shift in the optical probe pulse is
calibrated against dc line voltages. Raw data are generally
presented then as a “line voltage” even though it is the
electric field that is sensed. The relationship between the
transient fields actually present and this transient line
voltage is a primary target for future investigation.

VII.

In summary, we have discussed a variety of problems
that complicate the development of an accurate model for
subpicosecond optoelectronic switching and the measure-
ment of electrical waveforms on microstrip lines. We have
also shown that the situation is certainly not hopeless by
demonstrating that Monte Carlo techniques for modeling
ultrafast carrier transport can be implemented in self-
consistent fashion with a direct time-domain solution of

CoONCLUSION

Maxwell’s equations, thus providing a model which makes
relatively few assumptions.
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