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Electromagnetic and Transport Considerations
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Abstract —It is now possible to use optoelectronic techniques to both
generate and measure electrical waveforms with subpicosecond rise

times. These rise times invalidate assumptions commonly made in

developing equivalent circuit models for transmission lines and other
simplifications commonly made in modeling conductivity, In this paper

we discuss how a combination of direct finite-difference time-domain

solutions of Maxwell’s equations and Monte Carlo models of photocar-

rier transport can be used to avoid making these assumptions.

I. INTRODUCTION

PHOTOCONDUCTIVE switching and electro-optic

sampling provide a basis for generating and measur-

ing electrical waveforms with subpicosecond rise times. A

photoconductive switch is a simple structure, a gap in a

microstrip line laid down on a photoconductive substrate,

with a variety of uses [1]. The switch is activated by

exciting the gap with a laser pulse of duration under 0.1

ps. As these short laser pulses are generated at a repeti-

tion rate ranging from 1 kHz to 100 MHz, they also can

be used to repetitively sample the fields propagating

down the line. This is done by placing an electro-optic

material near the line, shining the optical pulses through

this material, and measuring the polarization shift gener-

ated by the electric field associated with the line [21–[61.

A commonly used analysis of such experiments was

developed by Auston [7]. In Auston’s approach, the pho-

toconductive switch is modeled by a time-varying conduc-

tance connected in parallel with a capacitance. This switch

is then inserted between two ideal, lossless transmission

lines, one terminated by a source and the other by an

impedance. The use of such a simple transmission line

model is questionable for waveforms with subpicosecond

rise times. While more complicated equivalent circuits,

incorporating transmission lines with frequency-depen-

dent characteristic impedances, have been used [8], these
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models are not well suited for the present case. Instead,

direct solutions of I’vlatwell’s equations are needed. for a

more general and exact approach.

Maxwell’s equations, however, do not provide a com-

plete mathematical description of the problem. They must

be supplemented by a set of constitutive relations. The

problem considered here involves the interaction between

an electromagnetic wave and photogenerated carriers.

The carriers appear in Maxwell-s equations as sources of

electromagnetic fields. On the other hand, the fields are

the forcing functions in the constitutive carrier transport

model. A model of the interaction between these two

systems can be accurate for subpicosecond rise times only

if the models of both systems are accurate for subpicosec-

ond rise times. Here, we use ensemble Monte Carlo

(EMC) techniques to model the photoconductive re-

sponse of the gap and direct solutions of Maxwell’s equa-

tions to model the electromagnetic of the problem.

Switching transient problems can be solved either in

the time domain or, jfor linear systems, in the frequency

domain (by transforming the results into the time domain

[9], [1OD. The electromagnetic aspects of this problem are
linear and can be investigated using such approaches.

However, the photociirrier transport processes are highly

nonlinear, thereby eliminating any frequency-domain ap-

proach to their modeling. Fortunately the time of interest

to us is at most a few tens of picosecond; therefore a

direct time-domain solution of Maxwell’s equations in

conjunction with a Monte Carlo trasnport model is possi-

ble for this problem.

II. TRANSIENT PHOTOCONDUCTIVITY IN

GALLIUM ARSENIDE

In Fig. 1 we show the energy flows of importance in

photoconductivity. A.n optical pulse is used to pump en-

ergy into the semiconductor by the generation of elec-

tron–hole pairs. In Fig. 2 we illustrate the possible pair
generation processes in gallium arsenide. We can photo-

generate electrons out of three different valence bands:

the heavy hole band, the light hole band, and the split-off
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Fig. 1. Energy flow in photoconductivity.
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phonons decay back to their equilibrium levels and the

system is thus connected to a heat bath.

The assumption effectively made by Auston, and used

in other models of photoconductivity as well [13], [141, is

that the system instantaneously achieves a steady state.

Under this assumed situation, the rate at which the carri-

ers gain energy from the fields is equal to the rate at

which they lose energy to the bath. We will refer to such

models as being quasi-static. However, such a steady state

takes several picosecond to be established following the

incidence of a short laser pulse. In Fig. 3 we illustrate this

by an EMC calculation of the average electron velocity

following photogeneration into GaAs. If a quasi-static

model were used, the carriers would be assumed to in-

stantaneously reach their final steady-state velocity. As
)

L“
qroup 5 can be seen, this is a poor approximation.

Transient responses for photoexcitation into GaAs, suchqroup 6
as that of Fig. 3, are wavelength dependent. When the

optical wavelength is long enough, no electrons are gener-

ated near or above the energy threshold for intervalley
k

scattering. For sufficiently short wavelengths, however,

electrons are photogenerated above this threshold. Sev-

\ eral things then hatmen. First, many of these electrons
/11 \\ \

Fig. 2. Possible electron-hole pam generation in GaAs,

band, provided that the photon energy is sufficient for

any individual transition. As is shown in Fig. 2, the

photogeneration process is as likely to produce an elec-

tron with a negative velocity as it is an electron with a

positive velocity. Therefore, the initial photocurrent is

zero. These carriers are accelerated by the electromag-

netic fields present in our structure. As the average

velocity or current builds, energy begins to flow from

these fields into the carriers. Energy gained by the carri-

ers flows out along several different paths. There are

several different carrier–carrier interactions or scattering

processes: the electron–electron interaction, hole–hole
scattering, and electron–hole scattering. The first two

merely reshuffle the energy (and momentum) inside one

of the two (carrier gases. The last, however, is of some

importance. Due to the large difference in effective mass

between electrons and holes, there is a net flow of energy

from the electron gas into the hole gas [11]. Both carrier

species also lose energy to the crystal lattice through the

process of optical phonon emission. Since they emit opti-

cal phonons at rates in excess of the absorption rate, the

population of the optical phonon modes is driven up to

levels above their equilibrium values. As this goes on, the

absorption rate, which is proportional to the number of

phonons available for a carrier to absorb, increases. The

emission rate, however, remains constant and therefore

the net rate at which energy flows from the carriers to the

lattice decreases. It takes several picosecond, however,

for this hot phonon effect to build [12]. EventualIv, these

.,
rapidly scatter to the higher mass valleys and the initial

transients, especially at low electric fields, are dominated

by a gradual return over several picosecond of these

electrons to the central valley. Additionally, for higher

fields, there is a preferential selection of negative-velocity

electrons as survivors in the central valley. Such electrons

lose energy to the field and thereby fall below the inter-

valley scattering threshold. In summary, the photore-

sponse is not only wavelength dependent but also highly

nonlinear and strongly affected by details of the elec-

tronic distribution in the energy bands [8].

The above results were calculated by the EMC tech-

nique, which we will generally use throughout this paper.

This is one variation among many possible transport mod-

els. EMC calculations operate at the semiclassical level,

where electrons are classical particles whose dynamics are

controlled by the energy bands of the system and the
various scattering processes are independent and instan-

taneous. While fully quantum mechanical models for

transport exist [15], [16], they use different simplifying

approximations. In an EMC simulation, we keep track of

several thousand particles, accelerating them by the fields

and statistically simulating the various individual scatter-
ing mechanisms. This is a computationally intensive task

but it involves no assumptions beyond those made in the

computation of the energy bands and scattering rates,

assumptions which are shared by all semiclassical trans-

port models. The Boltzmann transport equation is also

computationally intensive, as it is a nonlinear, integrodif-

ferential equation while its accuracy is limited by its use

of a single time distribution function [17].

Simpler models [18], [19] model only the average flow

of energy and momentum through the system without

assuming the existence of a steady state. These models

cannot describe the preferential selection of negative-
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Fig. 3. Average electron velocity calculated using EMC.

velocity electrons as survivors in the central valley as they completely characterized by just solving the equations

assume a specified shape to the distribution function [19].

In general, this assumed distribution function shape can

lead to an inaccurate emphasis on the wrong energy-
VXE=–p~ (la)

dependent scattering mechanism. Finally, we encounter

the quasi-static models in which we assume that carriers
V’XH=+J (lb)

instantaneously achieve a steady state with the field.

.

III. ELECTROMAGNETIC THEORY

Several techniques exist for solving Maxwell’s equations

in the time domain, including the transmission-line matrix

method [20], the time-domain method of lines [21], and

the finite difference method [22], [23]. Of these, the finite

difference scheme is more convenient for this study since

it directly discretizes the electric and magnetic fields

using a rectangular mesh in space and decouples the

fields over a small time interval (At). Therefore, the

spatial and temporal characteristics of the fields can eas-

(lC)

These are three equations in three unknowns, (i.e., E, H,

and J), while Q is considered a source. In an ideal

dielectric medium, where J and Q are zeros, (la) and

(lb) are sufficient to describe the electromagnetic phe-

nomena. The details c~f the solution in the pure dielectric

structure can be found elsewhere [22], [24].

We assume that the semiconductor has a uniform,

linear, isotropic dielectric constant and replace (la) by the

three scalar equations

ily be visualized and incorporated inside the semiconduc- 8EZ dEy H,
tor model. —— —. —

‘T
(2a)

Maxwell’s equations can be reduced to three indepen- ay (h

dent equations in the unknowns: E, the electric field; B, dEA t)Ez L?HY
the magnetic flux density; H, the magnetic field; D, the

Jz – dx ‘–p dt
(2b)

electric flux density; J, the conduction current density;

and Q, the total electric charge density. They must be and
supplemented by constitutive relations. Here we assume a

uniform, linear, isotropic medium for the dielectric and dEj dE,, 13HZ
(2C)magnetic relations and use the EMC for the conductivity

—— .——
x ay ‘dt”

model. The quantities e and w are the permittivity and

permeability of the medium respectively. Hence, the elec- There are three similar equations that correspond to (lb).
tromagnetic wave propagation in this medium can be Discretizing the electric field over a three-dimensional
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Fig. 4. The rectangular mesh used in discretizing Mazwell’s equations.

spatial mesh as shown in Fig. 4, (2a) becomes

E:(i, j,k)– E:(i, j–l, k)

Ay

E~(i, j,k)– E~(i, j,k–1)
—

Az

H~’+~’(i’, j’, k’) - lf~’(i’,j’,k’)
.
––P

At

Similar difference ecmations exist for (2b) and (2c).

(3)

For the magnetic ~ield, a similar set of equations can be

developed over a three-dimensional spatial mesh (i’, j’, k’)

and time (t’). One should notice that the electric field

mesh (i, j, k) and time (f) are displaced from the magnetic

field mesh (i’, j’, k’) and time (f’) by half the mesh incre-

ments (Ax, Ay, Az, and At), as shown in Fig. 4, to

achieve the proper definition of fields in space and time.

These equations are written in a matrix form as follows:

~tI+At= Hf+ AIE; + A2E;
x x (4a)

H,r+ll, = Hr’+ A3E; + A4E:
Y .V (4b)

H1’+A, = H:’+ A5E:, + ASE;
z (4C)

where H:’+ ‘t, H~’, El, Ei ~, etc., are vectors containing the
numerical values of the fields at the different time inter-

vals, and A,, A ~, etc., are matrices containing the infor-
mation about the structure, the mesh, and the boundary

conditions. There are three similar equations for the

electric field components at time t + At. The time evolu-

tion scheme is shown in Fig. 5. The time dependence of

the current density, J, is discussed in Section V.

Our switching transient starts from an initial self-

consistent distribution of the fields and charges. If the

device is not biased and contains no free charges, then it

may be assumed that the initial fields are zero. However,

o At/2 At 3A@ ~A[ t
I I *

13° H
l/2

E1 H
312

QO JIE Q] J3’2

Fig. 5. The evolution scheme.

when the device is biased, one should inititilly solve for

the dc charges and currents which are the sources for the

electric and magnetic fields. Then, the fields can be

obtained from their sources by using a suitable set of

equations.

Our problem also has boundaries on which the tangen-

tial electric and magnetic fields must be known. In practi-

cal cases, the semiconductor device is surrounded by

either metallic surfaces or open space (i.e., air). The

metallic conductors are normally approximated as perfect

conductors, which leads to zero tangential electric fields.

For the open space boundaries, no such direct physical

scheme exists, Therefore, one may enclose the structure

inside a box of perfectly conducting electric or magnetic

walls, selected based on the physics of the problem at

hand and the degree of accuracy required, as we will do

here. The alternative solution is to use absorbing bound-

ary conditions to artificially simulate open space [25], [26].

IV. THE MONTE CARLO APPROACH

We shall briefly outline here the main features of our

EMC algorithm, which has been used to study the tran-

sient transport of the photoexcited carriers. Creation of

the electron–hole pairs is simulated by adding particles

according to the line shape of the laser pulse. A three-

valley electron and three-band hole model under the

effective mass approximation is used for determining the

initial energy and wave vector distribution. The starting

k-space distribution is assumed to be isotropic, thus ne-

glecting any effects of warped hole bands and polarized

laser pulses [27], By varying the initial energy assigned to

the photogenerated carriers. we can simulate an arbitra~

laser wavelength. The carrier photogeneration monotoni-

cally decreases with depth according to a decaying expo-

nential with the decay set by a, the optical absorption

coefficient.
The present bipolar EMC includes all the relevant

carrier–phonon and carrier–carrier scattering mecha-

nisms. Single-mode LO and TO couplings via the polar

and optical deformation potential have been used, while

all plasmon–phonon interactions have been ignored.

Nonpolar acoustic scattering has also been included for

completeness since it is momentum randomizing in nature

and affects the carrier drift velocity. The calculations of

the carrier scattering rates and the choice of the scatter-

ing mechanisms are made according to techniques out-

lined by Jacoboni and Reggiani [28]. A static but time

evolving screening model proposed by Osman and Ferry
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[291is used for the polar interactions. Under this scheme,
the time changing distributions and carrier energies are

used to update the effective screening length. The main

contribution to the screening process under this static

model comes from the low-energy heavy holes.

Carrier–carrier scattering is also an important process

and has been incorporated into the present EMC simula-

tions. The electron–hole scattering affects the ultrafast

transient behavior by providing an additional channel for

energy transfer [30]. This energy loss is dominant for

carriers having energy below the phonon emission thresh-

old, and can even become important at higher carrier

energies for densities exceeding 5 x 1017 cm-3 [11]. Elec-

tron–electron and hole–hole collisions have been left out

since they do not change the ensemble momentum and

energy of each carrier type.

V. COUPLING THE TIME-VARYING ELECTROMAGNETIC

FIELDS WITH THE EMC METHOD

The EMC is a semiclassical approach for describing the

response of individual particles to external driving forces.

On the other hand, electromagnetic fields obtained from

a solution of Maxwell’s equations are based on a fluid

model. In order to create the link between the common

physical parameters of the kinetic EMC and the fluid

electromagnetic model, we use the following scheme.

From the EMC point of view, space is divided into

cubic cells. The electric and magnetic fields influencing

the carrier motion are considered uniform within each

cell. The carriers are positioned within the cell according

to the initial distribution. As was described in Section III,

the electric and magnetic fields obtained from the finite

difference scheme are defined on the boundaries of the

mesh used for the electromagnetic calculations. The cell

used for the EMC, however, does not coincide with the

three-dimensional mesh used in the electromagnetic solu-

tion. Therefore, the electric and magnetic fields resulting

from the finite difference scheme have to be converted

before being passed to the EMC program.

The current density distribution represents the feed-

back element from the EMC program for updating the

electromagnetic fields. Therefore, some conversion is re-

quired from the EMC particle definition of the current to

the electromagnetic fluid definition of the current density.

The current densities are defined in the center of the

EMC cell; hence it is defined at the corner of the spatially

shifted finite difference mesh.

mathematically calculated as

J(i, j,k)

The current density is

q (
N“([, ],k)

~ S“(i,j,k,n)Vh(i, j,k,n)
Ax AyAz ~=1

Aw,i,k)

)- ~ S’(i,j. k,n)V”(i,j, k,n) (5)
~=[

where She and V“” are, respectively, the supercharges
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and velocities associated with the holes and electrons

within the (i, j, k )th cell, N“i’ are the numbers of holes

and electrons in the (i, j, k)th cell respectively, and Ax,

A y, and A z are the mesh spacings in the three directions.

These supercharges play an important role. They are

required because while we can simulate only a few tens of

thousands of particles, millions are present in the real

device; therefore, each simulated particle corresponds to

many real particles. By adjusting these supercharges on

the fly, it is possible to introduce generation and recombi-

nation effects into the simulation.

We now outline the ~actual simulation process:

Step O)

Step 1)

Step 2)

Steps

The entire simulation begins by solving for the

initial electric and magnetic field distributions

before introducing the carriers. The initial dis-

tribution of the optically generated electron–

hole pairs is calculated via the EMC scheme.

The photogenerated carriers are allowed to

drift under the influence of the initial fields

for a period of At/2 starting from the t = O

instant. The current density distributions at

t = At/2 are calculated using (5).

The electric field, which is effectively defined

at NAt, is updated. The new electric field is

used to update the magnetic field, which is

effectively clefined at (N+ 1/2) A t,using (4).

The carriers are allowed to drift, for a period

of At, using the electric field obtained in step

1 and the magnetic field, effectively defined at

t= NA t,which is calculated as

~NA~ = () 5(~(Iv-05)At + ~(N+~5)At). ((j)

At the end of this time step At, the current

density distribution defined at (N+ 1/2) At is

calculated using (5).

1 and 2 are re~eated until the entire ~eriod of

interest is covered. These steps are summarized in the

flowchart shown in IFig. 6.

VI. RESULTS AND DISCUSSION

For demonstration purposes we simulate the structure

shown in Fig. 7. This structure is a coupled microstrip line

using undoped GaAs as the substrate. The thickness of

the dielectric material, L., is 4.5 ~m. The width of each

strip, w,, is 2 Vm, and the separation between them, S, is
4 pm, One of the strips is grounded at both ends. The

other strip has a gap., Lg, of width 5 pm with one end

grounded and the other connected to a dc source of 8 V.

This entire structure is enclosed within a metallic box of

dimensions L, = 7 pm, LY = 14 pm, and L,= 120 ~m.

The entire space insllde this metallic box is discretized

using a three-dimensional uniform mesh with Ax = Ay =

Az = 0.5 ~m.

The laser pulse, of energy 1.55 eV and duration 30 fs

(FWHM), is applied on the gap of width L8 mentioned
above. Furthermore, we assume that this pulse uniformly

covers the entire gap. The carrier concentration gener-
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Fig. 6. The flowchart.

Fig. 7. The simulated structure and the EMC box.

ated by this pulse is taken to be 3 X 10 lb cm-3. Since

undoped GaAs is used as the substrate, the thermally

generated carriers at 300 K are negligible in comparison

with the optically generated carriers. Based on this as-

sumption, virtually no current flows prior to the applica-

tion of the laser pulse.

The generated carriers are mairily concentrated around

the gap. The carrier velocities in GaAs are typically of the

order of 107 cm/s, so during the simulation times of

interest here, the carriers drift only short distances away

(a)

(b)

Fig. 8. The electron distribution in the cells below the air/GaAs
interface at (a) f = 0.3 ps and (b) t = 0.8 ps.

from the gap. It is therefore reasonable to run the EMC

only within the regions having mobile carriers, which, in

this case, is the box of dimensions WX, WY, and w, sur-

rounding the gap as shown in Fig. 7. The results shown

here are for WX= 2.5 ~m, WY= 4 ~m, and w, = 10 ~m.

The metallic contacts absorb all incident mobile charge,

and also supply the semiconductor with free carriers to

maintain current continuity. Following a particle absorp-

tion process by the metal on one side of the gap, carriers

are reinfected from the strip on the opposite side of the

gap. The velocity of the reinfected particle is chosen

randomly from a thermalized Maxwellian distribution.

Other boundaries are assumed to have negligible surface

recombination and are modeled as perfectly reflecting

boundaries. Finally, 9000 electrons and holes are used to

simulate the photogenerated carriers.

The electron density distributions in the cells immedi-

ately below the air/GaAs interface are shown in parts (a)

and (b) of Fig. 8 0.3 and 0.8 ps after applying the laser

pulse, respectively. Only a minor change in the electron

distribution can be observed for the following reasons.

First, the time span between the two distributions is
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(a) (a)

(b) (b)

Fig. 9. Thehole distribution inthecells below theair/GaAs interface
at (a) t = 0.3 ps and (b) t = 0.8 ps.

Fig. 10. Ezatthe surface at(a) t=0.3ps and(b) t=0.8ps.

2.00

small, which means that the electrons could move only
~

1.75

very short distances. This obviously would be altered by ~S

recombination in many situations. The last factor which ~ 1“50

can alter this has to do with the contacts. Contacts of the
u 1.25

~(~,

p type, for example, in a p-i-n structure cannot inject ~ 1.00

electrons. Here, since the electrons collected at one end ?

were reinfected at the other, this effect has a minimal K
075

g
change on the distribution. However, the electron distri- 050

bution spreading away from the gap, in the y direction, is ~ 0.25

noticeable. The hole distributions in the same cells at the 0,00”2

same times are shown in parts (a) and (b) of Fig. 9. The 0.0
Time (ps)

0.2 0.4 0.6 0.8 1.0

change in this distribution is even smaller than that ob- Fig. 11. The average electron velocity evolution with time.

served in Fig. 9. Obviously, this is due to the lower hole

mobility. The average electron velocity as a function of time is

The Z components of the electric field over the entire shown in Fig. 11. This velocity increases almost linearly

air/GaAs interface at t= 0.3 and 0.8 ps are shown in with time for t<0.2 ps. It reaches a maximum velocity

parts (a) and (b) of Fig. 10 respectively. Contra~ to the that is slightly higher than 1.5X 107 cm/s at about 0.5 ps

electron and hole distributions, a significant change is and then decreases toward the expected saturation value

observed in E,. This is understood by knowing that even of about 107 cm/s. This shape generally resembles the

when the carrier distributions do not change, their veloc- profiles seen in Monte Carlo simulations of photogenera-

ity in the Z direction must dramatically increase; of tion in spatially uniform, temporally constant field:.

course, this is up to a certain limit. However, the currents There are several unresolved modeling issues. We al-

generated by the movement of carriers induce fields that ready have referred to the question of how one models

oppose the original accelerating fields. This reduces the the open spaces seen in the real systems. We initially used

magnitude of the electric field in the gap. One should a reflecting electric clr magnetic wall, which introduces

notice that the initial E= in the gap (i.e., at t = 0.0) is not spurious reflections. While we might imagine the use of

uniform, as was previously mentioned by Lu et al. [321. well-established boundaries as being useful in certain
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precision measurements, we are equally sure that the vast

majority of applications of photoconductive switching and

electro-optic sampling will not involve placing the system

in a metallic box. Therefore, the use of absorbing bound-

aries at the open edges is required. To exploit this inter-

esting approach, we believe that some techniques must be

used to reduce the computational effort (e.g., using a

nonuniform mesh in the finite difference scheme) or to

eliminate stability constraints on time step selection (by

use of implicit numerical algorithms).

There also are boundary condition issues faced in the

EMC. Since it is a particle-based simulation, you must ask

what happens when the carrier hits the edge of the system

being simulated. Generally, the edge either reflects it or

absorbs it. If it is absorbed, then one must determine

whether or not it is to be reinfected into the system and, if

so, where and with what velocity. We have performed

some investigations of this point [31]. in which we again

use flexible supercharges to better match the particle

model with basic conservation rules.

There are also two material parameter issues not yet

resolved, First, the dielectric constant of GaAs and other

compound semiconductors is not constant over the wide

frequency range needed for accurate modeling of such

short rise times. In a time-domain simulation, we cannot

directly employ a frequency-dependent constant. While

we may be able to use the Monte Carlo to simulate the

electronic contribution inside the gap, outside the gap this

cannot be done. One approach would be to transform the

frequency-dependent dielectric relation into a convolu-

tion integral in the time domain. Beyond introducing

extra numerical problems, it complicates the transforma-

tion of (lb) to (2b).

The second material parameter issue is the electro-optic

sampler. These materials do not have a simple, constant

dielectric property but instead exhibit visible anisotropy.

This, however, can be implemented relatively easily here.

If this is done, we can then employ the code to determine

the degree to which the introduction of an external

electro-optic sampler changes the fields being sampled by

it. A point of interest here is that the electro-optically

induced polarization shift in the optical probe pulse is

calibrated against dc line voltages. Raw data are generally

presented then as a “line voltage” even though it is the

electric field that is sensed. The relationship between the

transient fields actually present and this transient line

voltage is a primary target for future investigation.

VII. CONCLUSION

In summary, we have discussed a variety of problems

that complicate the development of an accurate model for

subpicosecond optoelectronic switching and the measure-

ment of electrical waveforms on microstrip lines. We have

also shown that the situation is certainly not hopeless by

demonstrating that Monte Carlo techniques for modeling

ultrafast carrier transport can be implemented in self-

consistent fashion with a direct time-domain solution of

Maxwell’s equations, thus providing a model which makes

relatively few assumptions.
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